

Рекомендации по применению

продукта МагПро[®] для производства композитов по технологии SMC/BMC

Описание и применение

Продукт, выпускающийся под торговыми марками МагПро[®] 150 и МагПро[®] 170 — это оксид магния с высокой площадью поверхности, получаемый путём непрямого обжига измельченного природного гидроксида магния.

Листовой пресс-материал (препрег) SMC (Sheet Molding Compound) и неформовой пресс-материал (премикс) BMC (Bulk Molding Compound) — это термоусадочные термоотверждаемые полуфабрикаты. Они изготавливаются из тонких неотверждённых и утолщённых листов толщиной от 1 до 3 мм (SMC) либо в виде рыхлой бесформенной массы (BMC), из которых затем легко производить изделия.

Перед формованием SMC подвергают нескольким операциям обработки, таким как разрезание, складывание и размещение в пресс-форме. Такие манипуляции были бы невозможны без значительного уплотнения паст SMC, даже наполненных. Аналогично, во время формования под давлением было бы невозможно вызвать течение материала, наполненного стекловолокном внутри пресс-формы без высокой вязкости пасты SMC.

По этим причинам, но также для предотвращения разделения фаз внутри самой смолы после её обработки, необходимо сгущать пасту SMC, такая процедура является фундаментальной в процессе технологии SMC. Для этого в пасту добавляют загуститель во время её получения.

Как работает продукт

Наиболее используемыми в составах SMC являются оксиды и гидроксиды металлов группы IIA, такие как оксид магния и гидроксид магния.

Эти агенты включены (в форме сухого порошка или уже диспергированы в смоле для лучшей гомогенизации) в пасту SMC с номинальной концентрацией в диапазоне от 0,5% до 3% в расчёте на смолу и низкопрофильную добавку.

Для данного применения MgO должен иметь высокую поверхностную активность, предпочтительно площадь поверхности больше 130 м²/г.

Чем выше значение, тем выше скорость загущения композиции до достижения требуемой вязкости после смешения ингредиентов, что означает меньшее время производственного цикла.

Применение

В таблицах представлены типовые рецептуры для производства композитов по технологии SMC/BMC.

Таблица 1. Рецептура композиции SMC общего назначения

Ингредиент	Macc. %
Ненасыщенная полиэфирная смола	25.00
Инициатор полимеризации	0.25
Ингибитор полимеризации	0.05
Компенсатор усадки (60% раствор поливинилацетата в стироле)	4.00
Минеральный наполнитель (мел, доломит, тальк)	40.00
Загуститель (высокоактивный оксид магния МагПро® 170)	1.00
Разделительная смазка для форм (стеарат цинка)	0.70
Рубленное стекловолокно	29.00
Итого	100.0

Применение

Таблица 2. Рецептура композиции SMC с повышенной эластичностью

Ингредиент	Macc. %
Ненасыщенная полиэфирная смола	20.7
Минеральный наполнитель (мел, доломит, тальк)	34.9
Катализатор сшивания трет-бутилпероксибензоат (ТВРВ)	0.1
Разделительная смазка для форм (стеарат цинка)	0.3
Стаблизитор молекулярной массы (смесь изоцианатов с полиолами)	3.3
Стабилизитор — неионогенное ПАВ	0.7
Линейный олигомер (акриловый)	1.0
Загуститель (высокоактивный оксид магния МагПро® 170)	1.0
Модификатор упругости	16.0
Рубленное стекловолокно	22.0
Итого	100.0

Преимущества продукта МагПро®

- Эффективный акцептор кислот, замедлитель
 подвулканизации и термостабилизатор для резин на основе
 галогенсодержащих каучуков.
- Не содержит критических примесей сульфатов и хлоридов.
- Точно заданный и однородный размер частиц.
- Лёгкость замены в рецептурах заменяется в соотношении
 1 к 1 по массе с использованным ранее видом активного оксида магния.
- Лучшее соотношение цена/площадь поверхности на рынке.
- Все виды упаковки (биг-бэги 1 тонна, ПЭ мешки 20 кг, мешки 1 кг из ЭВА плёнки с низкой температурой плавления для ввода в резиносмеситель без распаковки).
- Безопасность при транспортировке, хранении, в производстве.
- Стабильное качество.

Выбирая продукты МагПро[®], вы получаете квалифицированную техническую поддержку по вопросам применения, а также возможность разработки специализированного продукта с индивидуально подобранными свойствами.

Свяжитесь с нами через форму запроса на сайте.

www.brucite.plus +7 (495) 789 65 30 info@brucite.plus

